

Brilaroxazine Topical Liposomal-gel Formulation Displays Efficacy in the Imiquimod-induced Psoriatic Mouse Model

Laxminarayan Bhat*, Seema R Bhat, Arulprakash Ramakrishna, Muthukumar Amirthalingam

Reviva Pharmaceuticals Holdings, Inc., Cupertino, California, USA (19925 Stevens Creek Blvd, Ste 100, Cupertino, CA 95014)

	CTION

Psoriasis is a systemic immune-mediated, chronic-residual dermal inflammatory disease with a global prevalence of \sim 125 million¹⁻⁴. It presents as recurrent episodes of hyperkeratotic, erythematous plaques and silvery-coated scales on the skin¹⁻². Mental illness exists as a major comorbidity³⁻⁷.

This condition's pathology involves an inflammatory skin response². This process generates rapid keratinocyte multiplication, followed by cellular movement from the epidermal basal layer to the epidermis's upper layer, leading to thick dry patches or plaques (seen in 80% of cases)^{8,9}.

Serotonin (5-HT) and dopamine (D) play pathologic roles. 5-HT influences inflammation and immunity proliferation¹⁰. D stimulates the production of proinflammatory cytokines and the inciting of keratinocyte proliferation and differentiation¹¹⁻¹³.

Brilaroxazine (RP5063) displays a high affinity for $D_{2/3/4}$ and 5-HT_{2A/2B/7} receptors and a moderate affinity for the serotonin transporter¹⁴⁻¹⁸. It brings an established efficacy, safety, and pharmacokinetic profile¹⁴⁻¹⁸. Preclinical work indicates that it influences pro-inflammatory and profibrotic cytokines and chemokines^{14,15,19}. A new liposomal-gel (lipogel) formulation offers a novel topical option for treating psoriasis.

OBJECTIVE AND METHODS

Objective:

This preclinical study assesses the efficacy of topical brilaroxazine in lipogel (Brilaroxazine Formulation) in a 5% imiquimod-induced psoriatic mouse model (BALB/c)²⁰.

Methods:

Animals and Groups: The study utilized three groups (n=6 per) of female BALB/c mice (8-10 weeks old, weight + 5 gm): 1) Sham, 2) Imiquimod, and 3) Imiquimod + Brilaroxazine.

<u>Procedures</u>: Psoriasis induction involved 5% imiquimod application to the animals' shaved backs (3 cm x 3 cm area) on the morning of Days 1-11. Brilaroxazine Formulation (1.5% w/w, topically daily) administration occurred 3 hours after induction.

Upon animal sacrifice on Day 12, investigators collected skin tissue from the test area, performed histology, and obtained blood for enzyme-linked immunosorbent assay to determine cytokine levels.

<u>Assessments</u>: 1) Psoriasis Area and Severity Index (PASI) scores (Days 1-12), 2) histology for Baker's score based on Hematoxylin and Eosin (H&E) stained tissue (Day 12), and 3) serum cytokine Tumor Necrosis Factor-alpha (TNF- α), Ki-67, and Transforming growth factor beta (TGF- β) (Day 12). <u>Analysis</u>: One-way ANOVA followed by Dennett's multiple 't'-test, Post hoc (GraphPad Prism software), with a P value < 0.05 designating significance.

RESULTS

FIGURE 1

Comparative Effects on PASI Score from Days 1-12

a a d

- --- Imiquimod
- Imiquimod + Brilaroxazine
- 📥 Sham

Imiquimod+Brilaroxazine group PASI scores were consistently lower than those in the induced Psoriasis group Days 3-12 (P=0.03, Days 1-12), with maximum difference seen on Days 11-12. PASI- Psoriasis Area and Severity Index.

TABLE 1

Histological Observations

100x Magnification		
Group	Observations	
Sham	Normal epidermis (1-3 layers), no inflammatory infiltration	
Imiquimod	Increased epithelial layers 3-7 layers (green), increased	
	keratinization, Munro's abscess (red arrow), severe	
	inflammatory (blue) infiltration	
Imiquimod + Brilaroxazine	Reduced epithelial thickness (3-4 layers), reduced	
-	inflammatory infiltration, absence of parakeratinization,	
	absence of Munro's abscess	
400x Magnification		
Group	Observations	
Sham	Epithelium 1-3 layers, no inflammatory infiltration, very little	
	keratin in stratum corneum	
Imiquimod	Severe acute and chronic inflammatory infiltration, Kogoj	
	pustule	
Imiquimod + Brilaroxazine	Reduced epithelial thickness, reduced inflammatory infiltration	

FIGURE 2

H&E Staining of Skin Histology

100x Magnification

A. Sham

C. Imiquimod + Brilaroxazine

LB1745

B. Imiguimod

B. Imiquimod

400x Magnification

A. Sham

C. Imiquimod + Brilaroxazine

Differences in histology and H&E staining appear between Sham with the Imiquimod and Imiquimod+Brilaroxazine groups and between the latter two groups.

H&E: Hematoxylin and Eosin

FIGURE 3

Baker's Scores

FIGURE 4

Serum Pro-inflammatory Cytokine Levels

DISCUSSION

This preclinical study represents an initial proof-of-concept (PoC) for the Brilaroxazine Formulation's activity via multiple positive signals- PASI, histology, and cytokine. It also supports D and 5-HT receptors as viable psoriasis targets and offers an initial glimpse at changes indicating anti-inflammatory and anti-fibrotic effects.

5-HT and D receptor actions underlie these effects. 5-HT regulates inflammation and immunity, particularly 5-HT_{2B/7} receptors¹⁰. Receptor expression appears significantly altered in psoriatic skin at multiple dermal layers, and systemic proinflammatory cytokines contribute to this condition's pathogenesis²¹⁻²⁴. D_{2/3/4} receptors regulate keratinocyte proliferation and differentiation, modulate the immune system, and stimulate IL-6 and IL-8, leading to multiple pathological effects ^{11,13, 25,26}.

Brilaroxazine mediates psoriasis through D_{2/3/4} and 5 HT_{1A/2A/2B/7} receptors, plus SERT^{14,15,18}. Notable is its mitigation of pro-inflammatory cytokine levels in pulmonary arterial hypertension and idiopathic pulmonary fibrosis (IPF)^{14, 15,19}. and anti-fibrotic effects as evidenced by its reduction of collagen levels in the later condition^{15,19}. The lipogel formulation, a topical, semisolid delivery system, provides targeted, direct contact with the plaque target area, aiding in attaining adequate dermal levels. It leads to direct drug penetration, mediates 5-HT's actions on multiple dermal layers to control the disease process, and reduces systemic exposure and side effects²⁷.

The brilaroxazine formulation with the lipogel delivery system offers a potential option for psoriasis, which has links to mental illness (as high as 36%) and can impair psychosocial function^{3–7}. Brilaroxazine's clinical development program involves phase 2 and 3 studies for its oral formulation in schizophrenia and plans for other psychiatric indications²⁸⁻²⁹.

CONCLUSION

This evaluation of brilaroxazine lipogel formulation activity using an imiquimod-induced psoriatic mouse model (BALB/c) provides an initial PoC via its effects on PASI, H&E staining, Baker's scores, and proinflammatory cytokines.

This approach offers a new target and novel delivery system for further investigation.

REFERENCES

1. Aleem D, Tohid H. Rev Colomb Psiquiatr. 2018	12. Pani L, et al. Mol Psychiatry. 2000.
2. Kamiya K, et al. Int J Mol Sci. 2019.	13. Wardhana M, et al. Maced J Med Sci. 2019.
3. Liu L, et al. Psychiatry Res. 2023.	14. Bhat L, et al. Eur J Pharmacol. 2017.
4. Wu JJ, et al. Journal of the European Academy of Dermatology and Venereology. 2017.	15. Bhat L, et al. Eur J Pharmacol. 2017.
5. Hedemann TL, et al. Gen Hosp Psychiatry. 2022	16. Cantillon M, et al. Eur J Drug Metab Pharmacokinet. 2018.
6. Biljan D, et al. Collegium antropologicum. 2009.	17. Cantillon M, et al. Clin Transl Sci. 2018.
7. Sampogna F, et al. British Journal of Dermatology. 2006.	18. Cantillon M, et al. Clin Transl Sci. 2018.
8. Armstrong AW, Read C. JAMA. 2020.	19. Bhat L. ESMED. 2023.
9. Raharja A, et al. Clinical Medicine. 2021.	20. Van Der Fits L, et al. The Journal of Immunology. 2009.
10.Roumier A,. Chapter 10 - Serotonin and the Immune System. In: Pilowsky PM, ed. Serotonin. Academic Press; 2019.	21. Nordlind K, et al. Arch Dermatol Res. 2006.
11. Parrado AC, et al. Neuroimmunomodulation. 2012.	22. Morita T, et al. Neuron. 2015.

Lundeberg L. Arch Dermatol Res. 2002. Thorslund K. Karolinska Institutet (Sweden). 2012. Fuziwara S, et al. Journal of Investigative Dermatology. 2005. Besser MJ, et al. J Neuroimmunol. 2005;169(1-2):161-171 Aggarwal G. Asian Journal of Pharmaceutics. 2018. Safety and Efficacy of Brilaroxazine (RP5063) in Schizophrenia (RECOVER). NCT05184335. ClinicalTrials.gov. RP5063 in Subjects with Schizophrenia or Schizoaffective Disorder. NCT01490086. ClinicalTrials.gov.

DISCLOSURES AND ACKNOWLEDGEMENTS

Funding Source: Grant supporting the study was awarded to Aaray Health Solutions Pvt Ltd, India from Reviva Pharmaceuticals Holdings, Inc.

Acknowledgments: John M. York, PharmD, MBA, Akita Biomedical, Inc. provided editorial support, and Reviva Pharmaceuticals Holdings, Inc. funded this effort.